Relational analysis of spices used in Indian cuisine

Published

December 9, 2020

Find out which relations between different Indian spices

Spices are central to Indian cuisine. What is referred to colloquially as ‘Indian’ food is made of many different sub-cuisines. As a result, there are a plethora of spices usually brought up when considering ‘Indian’ food. Knowing which spices are most frequently used can help cooks novice or seasoned to make an informed decision about spices that promise the most bang for the buck.

I use a Kaggle dataset containing 6000+ recipes from https://www.archanaskitchen.com/. Using this data as base collection of recipes representing most of the indian food, I analyze which spices occur most freqeuntly and which spices are most connected to each other.

import pandas as pd 
import numpy as np 
#----- PLOTTING PARAMS ----# 
import matplotlib.pyplot as plt
from matplotlib.pyplot import cm
import seaborn as sns
%config InlineBackend.figure_format = 'retina'
%config InlineBackend.print_figure_kwargs={'facecolor' : "w"}

plot_params = {
'font.size' : 22,
'axes.titlesize' : 24,
'axes.labelsize' : 20,
'xtick.labelsize' : 16,
'ytick.labelsize' : 16,
}
 
plt.rcParams.update(plot_params)

Read the dataset

food_df = pd.read_csv('./data/IndianFoodDatasetCSV.csv')
food_df.columns
Index(['Srno', 'RecipeName', 'TranslatedRecipeName', 'Ingredients',
       'TranslatedIngredients', 'PrepTimeInMins', 'CookTimeInMins',
       'TotalTimeInMins', 'Servings', 'Cuisine', 'Course', 'Diet',
       'Instructions', 'TranslatedInstructions', 'URL'],
      dtype='object')
food_df.shape
(6871, 15)
# dropping miscellaneous columns and NaN entries
columns_to_drop = ['CookTimeInMins', 'Servings', 'Course', 'Diet', 'Instructions', 'TranslatedInstructions', 'URL']
food_df = food_df.drop(columns = columns_to_drop).dropna()
# data has indian-inspired international cuisines which are not what we are interested in
cuisines_to_drop = ['Mexican', 'Italian Recipes', 'Thai', 'Chinese', 'Asian', 'Middle Eastern', 'European',
                   'Arab', 'Japanese', 'Vietnamese', 'British', 'Greek', 'French', 'Mediterranean', 'Sri Lankan',
                   'Indonesian', 'African', 'Korean', 'American', 'Carribbean', 'World Breakfast', 'Malaysian', 'Dessert',
                   'Afghan', 'Snack', 'Jewish', 'Brunch', 'Lunch', 'Continental', 'Fusion']

food_df = food_df.loc[ ~ food_df['Cuisine'].isin(cuisines_to_drop) ] #Dropping entries in `food_df` which have non-indian cuisines 
food_df.shape
(4881, 8)
food_df.head(5)
Srno RecipeName TranslatedRecipeName Ingredients TranslatedIngredients PrepTimeInMins TotalTimeInMins Cuisine
0 1 Masala Karela Recipe Masala Karela Recipe 6 Karela (Bitter Gourd/ Pavakkai) - deseeded,S... 6 Karela (Bitter Gourd/ Pavakkai) - deseeded,S... 15 45 Indian
1 2 टमाटर पुलियोगरे रेसिपी - Spicy Tomato Rice (Re... Spicy Tomato Rice (Recipe) 2-1/2 कप चावल - पका ले,3 टमाटर,3 छोटा चमच्च बी... 2-1 / 2 cups rice - cooked, 3 tomatoes, 3 teas... 5 15 South Indian Recipes
2 3 Ragi Semiya Upma Recipe - Ragi Millet Vermicel... Ragi Semiya Upma Recipe - Ragi Millet Vermicel... 1-1/2 cups Rice Vermicelli Noodles (Thin),1 On... 1-1/2 cups Rice Vermicelli Noodles (Thin),1 On... 20 50 South Indian Recipes
3 4 Gongura Chicken Curry Recipe - Andhra Style Go... Gongura Chicken Curry Recipe - Andhra Style Go... 500 grams Chicken,2 Onion - chopped,1 Tomato -... 500 grams Chicken,2 Onion - chopped,1 Tomato -... 15 45 Andhra
4 5 आंध्रा स्टाइल आलम पचड़ी रेसिपी - Adrak Chutney ... Andhra Style Alam Pachadi Recipe - Adrak Chutn... 1 बड़ा चमच्च चना दाल,1 बड़ा चमच्च सफ़ेद उरद दाल,2... 1 tablespoon chana dal, 1 tablespoon white ura... 10 30 Andhra

Drop non-english entries for consistency

# Some entries in the `TranslatedIngredients` have non-english entries 
def filter_english(string):
    try:
        string.encode('utf-8').decode('ascii')
        out = True
    except UnicodeDecodeError: 
        out = False
    return out
# Droping columns in the dataset having ingredients in language other than english 
df = food_df.loc[ food_df['TranslatedIngredients'].apply(filter_english) ]
df.shape
(4273, 8)
df = df.reset_index()

Generate a consistent list of Indian spices for better tabulation

Next for consistent tabulation I needed a list of spices to look for. Wikipedia has a page on Indian spices which lists various spices used in Indian cuisine. I use this list to search names of spices in the recipe entries.

#read file of all indian spices on wikipedia
wiki_file_pd = pd.read_html('https://en.wikipedia.org/wiki/List_of_Indian_spices')
spices_list = wiki_file_pd[0]['Standard English'].copy().str.lower()

#some important spices to add
spices_to_add = pd.Series(['black salt', 'green chillies', 'chilli powder'])

#some spices are too common (such as pepper) or not a spice, but a vegetable, or are otherwise corrupted (for example,
#cardamom is often listed as "cardamom" nto specifying whether it is black or green)

spices_to_drop = ['black pepper', 'capers', 'chili pepper powder', 'cinnamon buds', 'citric acid', 'garlic', 'capsicum', 'charoli', 'garcinia gummi-gutta', 'inknut', 'garcinia indica',
                  'black mustard seeds/raee', 'cumin seed ground into balls', 'dried ginger', 'green chili pepper', 'long pepper', 'four seeds', 'cubeb', 'gum tragacanth', 'jakhya', 'licorice powder',
                  'indian bedellium tree', 'mango extract', 'coriander powder', 'saffron pulp', 'black cardamom', 'brown mustard seed', 'black cumin', 'panch phoron']

spices_list = spices_list.loc[ ~spices_list.isin(spices_to_drop) ].append(spices_to_add).reset_index(drop=True)
spices_list
0                      alkanet root
1                           amchoor
2                        asafoetida
3             celery / radhuni seed
4         bay leaf, indian bay leaf
5                          cinnamon
6                            cloves
7                    coriander seed
8                        cumin seed
9     curry tree or sweet neem leaf
10                      fennel seed
11                   fenugreek leaf
12                   fenugreek seed
13                     garam masala
14                           ginger
15                   green cardamom
16                indian gooseberry
17                          kalpasi
18                     mustard seed
19                     nigella seed
20                           nutmeg
21                             mace
22                 pomegranate seed
23                       poppy seed
24                          saffron
25                      sesame seed
26                      star aniseh
27                         tamarind
28                thymol/carom seed
29                         turmeric
30                     white pepper
31                       black salt
32                   green chillies
33                    chilli powder
dtype: object

One more step is editing the spices so that my string counter can find different versions of the same spice.

#editing the spices so that my string counter can find different versions of the same spice
spices_list = spices_list.str.replace('amchoor', 'amchur/amchoor/mango extract') \
                    .replace('asafoetida', 'asafetida/asafoetida/hing') \
                    .replace('thymol/carom seed', 'ajwain/thymol/carom seed') \
                    .replace('alkanet root', 'alkanet/alkanet root') \
                    .replace('chilli powder', 'red chilli powder/chilli powder/kashmiri red chilli powder') \
                    .replace('celery / radhuni seed', 'celery/radhuni seed') \
                    .replace('bay leaf, indian bay leaf', 'bay leaf/bay leaves/tej patta') \
                    .replace('curry tree or sweet neem leaf', 'curry leaf/curry leaves') \
                    .replace('fenugreek leaf', 'fenugreek/kasoori methi') \
                    .replace('nigella seed', 'nigella/black cumin') \
                    .replace('ginger', 'dried ginger/ginger powder') \
                    .replace('cloves', 'cloves/laung') \
                    .replace('green cardamom', 'cardamom/green cardamom/black cardamom')\
                    .replace('indian gooseberry', 'indian gooseberry/amla')\
                    .replace('coriander seed', 'coriander seed/coriander powder')\
                    .replace('star aniseh', 'star anise')\
                    .replace('cumin seed', 'cumin powder/cumin seeds/cumin/jeera')
spices_list
0                                  alkanet/alkanet root
1                          amchur/amchoor/mango extract
2                             asafetida/asafoetida/hing
3                                   celery/radhuni seed
4                         bay leaf/bay leaves/tej patta
5                                              cinnamon
6                                          cloves/laung
7                       coriander seed/coriander powder
8                  cumin powder/cumin seeds/cumin/jeera
9                               curry leaf/curry leaves
10                                          fennel seed
11                              fenugreek/kasoori methi
12                                       fenugreek seed
13                                         garam masala
14                           dried ginger/ginger powder
15               cardamom/green cardamom/black cardamom
16                               indian gooseberry/amla
17                                              kalpasi
18                                         mustard seed
19                                  nigella/black cumin
20                                               nutmeg
21                                                 mace
22                                     pomegranate seed
23                                           poppy seed
24                                              saffron
25                                          sesame seed
26                                           star anise
27                                             tamarind
28                             ajwain/thymol/carom seed
29                                             turmeric
30                                         white pepper
31                                           black salt
32                                       green chillies
33    red chilli powder/chilli powder/kashmiri red c...
dtype: object

Ingredients in the recipes

ingredients_series = df[['TranslatedRecipeName','TranslatedIngredients']]
ingredients_series
TranslatedRecipeName TranslatedIngredients
0 Masala Karela Recipe 6 Karela (Bitter Gourd/ Pavakkai) - deseeded,S...
1 Spicy Tomato Rice (Recipe) 2-1 / 2 cups rice - cooked, 3 tomatoes, 3 teas...
2 Ragi Semiya Upma Recipe - Ragi Millet Vermicel... 1-1/2 cups Rice Vermicelli Noodles (Thin),1 On...
3 Gongura Chicken Curry Recipe - Andhra Style Go... 500 grams Chicken,2 Onion - chopped,1 Tomato -...
4 Andhra Style Alam Pachadi Recipe - Adrak Chutn... 1 tablespoon chana dal, 1 tablespoon white ura...
... ... ...
4268 One Pot Punjabi Rajma Masala Recipe In Preethi... 1 cup Rajma (Large Kidney Beans),1 inch Ginger...
4269 Saffron Paneer Peda Recipe 2 cups Paneer (Homemade Cottage Cheese) - crum...
4270 Quinoa Phirnee Recipe (Quinoa Milk Pudding) 1 cup Quinoa,3/4 cup Sugar,1 teaspoon Cardamom...
4271 Ullikadala Pulusu Recipe | Spring Onion Curry 150 grams Spring Onion (Bulb & Greens) - chopp...
4272 Kashmiri Style Kokur Yakhni Recipe-Chicken Coo... 1 kg Chicken - medium pieces,1/2 cup Mustard o...

4273 rows × 2 columns

spices_list_column_to_add = {i: np.zeros(len(ingredients_series)) for i in spices_list.to_list()}
ingredients_series = ingredients_series.join(pd.DataFrame(spices_list_column_to_add))
ingredients_series
TranslatedRecipeName TranslatedIngredients alkanet/alkanet root amchur/amchoor/mango extract asafetida/asafoetida/hing celery/radhuni seed bay leaf/bay leaves/tej patta cinnamon cloves/laung coriander seed/coriander powder ... saffron sesame seed star anise tamarind ajwain/thymol/carom seed turmeric white pepper black salt green chillies red chilli powder/chilli powder/kashmiri red chilli powder
0 Masala Karela Recipe 6 Karela (Bitter Gourd/ Pavakkai) - deseeded,S... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 Spicy Tomato Rice (Recipe) 2-1 / 2 cups rice - cooked, 3 tomatoes, 3 teas... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 Ragi Semiya Upma Recipe - Ragi Millet Vermicel... 1-1/2 cups Rice Vermicelli Noodles (Thin),1 On... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 Gongura Chicken Curry Recipe - Andhra Style Go... 500 grams Chicken,2 Onion - chopped,1 Tomato -... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 Andhra Style Alam Pachadi Recipe - Adrak Chutn... 1 tablespoon chana dal, 1 tablespoon white ura... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
4268 One Pot Punjabi Rajma Masala Recipe In Preethi... 1 cup Rajma (Large Kidney Beans),1 inch Ginger... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4269 Saffron Paneer Peda Recipe 2 cups Paneer (Homemade Cottage Cheese) - crum... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4270 Quinoa Phirnee Recipe (Quinoa Milk Pudding) 1 cup Quinoa,3/4 cup Sugar,1 teaspoon Cardamom... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4271 Ullikadala Pulusu Recipe | Spring Onion Curry 150 grams Spring Onion (Bulb & Greens) - chopp... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4272 Kashmiri Style Kokur Yakhni Recipe-Chicken Coo... 1 kg Chicken - medium pieces,1/2 cup Mustard o... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4273 rows × 36 columns

Using the spice_list to find spice name in the recipe

I used regular expression to search for spice names in the entries

# Convenience function to search a given ingredient list for spice names
import re 
def search_spice(ingredient_string, spice_string):
    '''
    Check if a spice exists in the list of ingredients for a recipe 
    '''
    spice_list = spice_string.split('/')
    for _spice in spice_list:
        if re.search(_spice.lower(), ingredient_string.lower()):
            return True
            break
for row, values in ingredients_series.iterrows():
    for spice_entry in spices_list:
        if search_spice(values['TranslatedIngredients'], spice_entry):
            ingredients_series.loc[row, spice_entry] = 1
        else:
            ingredients_series.loc[row, spice_entry] = 0
food_spice_mix = ingredients_series.drop(['TranslatedIngredients'], axis=1).reset_index(drop=True)
#editing the spices so that my string counter can find different versions of the same spice
food_spice_mix.rename(columns={'amchur/amchoor/mango extract':'amchoor', \
                    'asafetida/asafoetida/hing': 'asafoetida', \
                    'ajwain/thymol/carom seed': 'ajwain', \
                    'alkanet/alkanet root': 'alkanet root', \
                    'red chilli powder/chilli powder/kashmiri red chilli powder': 'chilli powder', \
                    'celery/radhuni seed': 'celery seeds',\
                    'bay leaf/bay leaves/tej patta': 'bay leaf', \
                    'curry leaf/curry leaves': 'curry leaves',\
                    'fenugreek/kasoori methi': 'fenugreek leaf', \
                    'nigella/black cumin': 'nigella seed', \
                    'ginger': 'dried ginger',\
                    'cloves/laung': 'cloves', \
                    'cardamom/green cardamom/black cardamom': 'cardamom',\
                    'indian gooseberry/amla': 'indian gooseberry',\
                    'coriander seed/coriander powder': 'coriander seeds/powder',\
                    'cumin powder/cumin seeds/cumin/jeera': 'cumin seeds/powder',\
                    'dried ginger/ginger powder': 'ginger powder'}, inplace=True)
food_spice_mix.columns
Index(['TranslatedRecipeName', 'alkanet root', 'amchoor', 'asafoetida',
       'celery seeds', 'bay leaf', 'cinnamon', 'cloves',
       'coriander seeds/powder', 'cumin seeds/powder', 'curry leaves',
       'fennel seed', 'fenugreek leaf', 'fenugreek seed', 'garam masala',
       'ginger powder', 'cardamom', 'indian gooseberry', 'kalpasi',
       'mustard seed', 'nigella seed', 'nutmeg', 'mace', 'pomegranate seed',
       'poppy seed', 'saffron', 'sesame seed', 'star anise', 'tamarind',
       'ajwain', 'turmeric', 'white pepper', 'black salt', 'green chillies',
       'chilli powder'],
      dtype='object')
food_spice_mix = food_spice_mix.sort_index(axis=1)

Generating a spice adjacency matrix

num_spice = len(spices_list)
spice_col_name = [i for i in food_spice_mix.columns[1:].to_list()]
spice_adj = pd.DataFrame(np.zeros(shape=(len(spices_list),len(spices_list))), columns= spice_col_name, index=spice_col_name)
spice_adj_freq = pd.DataFrame(np.zeros(shape=(len(spices_list),len(spices_list))), columns= spice_col_name, index=spice_col_name)
for row, value in food_spice_mix.iterrows():
    for i in spice_col_name:
        for j in spice_col_name:
            if (value[i] == 1) & (value[j] == 1):
                spice_adj_freq.loc[i,j] += 1
                spice_adj.loc[i,j] = 1

Normalize the spice occurance frequency with the total entries in the main dataset

spice_adj_freq = spice_adj_freq / len(food_spice_mix) * 100
spice_adj_freq.round(2)
ajwain alkanet root amchoor asafoetida bay leaf black salt cardamom celery seeds chilli powder cinnamon ... nigella seed nutmeg pomegranate seed poppy seed saffron sesame seed star anise tamarind turmeric white pepper
ajwain 5.22 0.00 0.70 1.45 0.98 0.07 1.05 0.00 3.49 1.33 ... 0.16 0.16 0.09 0.23 0.21 0.40 0.23 0.37 2.97 0.00
alkanet root 0.00 0.07 0.00 0.07 0.05 0.00 0.07 0.00 0.07 0.07 ... 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
amchoor 0.70 0.00 4.98 1.54 0.37 0.21 0.35 0.02 3.86 0.47 ... 0.35 0.00 0.14 0.02 0.05 0.26 0.05 0.33 3.51 0.02
asafoetida 1.45 0.07 1.54 24.60 1.33 0.30 1.61 0.21 9.69 1.87 ... 0.30 0.14 0.09 0.54 0.28 1.57 0.26 5.17 15.05 0.02
bay leaf 0.98 0.05 0.37 1.33 10.70 0.09 6.04 0.07 6.72 6.65 ... 0.26 0.61 0.12 0.75 0.66 0.16 1.10 0.26 7.54 0.07
black salt 0.07 0.00 0.21 0.30 0.09 1.64 0.09 0.02 0.61 0.09 ... 0.02 0.00 0.09 0.00 0.09 0.02 0.02 0.28 0.33 0.00
cardamom 1.05 0.07 0.35 1.61 6.04 0.09 17.79 0.14 6.13 7.98 ... 0.07 1.08 0.23 1.47 3.14 0.35 1.29 0.42 6.60 0.07
celery seeds 0.00 0.00 0.02 0.21 0.07 0.02 0.14 0.80 0.37 0.19 ... 0.00 0.09 0.00 0.00 0.02 0.00 0.02 0.00 0.51 0.00
chilli powder 3.49 0.07 3.86 9.69 6.72 0.61 6.13 0.37 37.96 7.04 ... 0.84 0.44 0.47 1.38 0.68 1.59 0.82 3.58 28.39 0.05
cinnamon 1.33 0.07 0.47 1.87 6.65 0.09 7.98 0.19 7.04 13.13 ... 0.14 0.96 0.19 1.40 0.84 0.23 1.38 0.89 8.10 0.07
cloves 2.01 0.07 1.43 5.05 6.58 0.16 7.65 0.19 14.14 9.29 ... 0.35 0.70 0.23 1.59 0.80 0.96 1.43 3.93 17.29 0.02
coriander seeds/powder 1.76 0.00 2.41 5.13 4.91 0.26 4.31 0.47 16.26 4.35 ... 0.35 0.30 0.28 0.70 0.33 0.56 0.59 1.85 16.78 0.00
cumin seeds/powder 2.15 0.00 3.28 13.27 5.87 1.19 5.20 0.35 21.55 6.67 ... 0.89 0.54 0.51 1.24 0.54 1.92 0.91 5.87 27.45 0.07
curry leaves 0.61 0.00 0.44 12.54 1.01 0.12 1.17 0.05 8.64 2.04 ... 0.16 0.07 0.07 0.66 0.02 1.73 0.28 7.33 16.52 0.05
fennel seed 0.75 0.05 0.82 1.68 1.45 0.16 1.99 0.07 3.77 2.46 ... 0.70 0.26 0.09 0.91 0.42 0.37 0.75 0.82 4.21 0.00
fenugreek leaf 0.87 0.00 0.80 4.54 1.64 0.12 1.52 0.12 6.39 1.73 ... 0.70 0.02 0.16 0.37 0.07 0.89 0.26 3.23 8.71 0.00
fenugreek seed 0.14 0.00 0.47 3.16 0.35 0.07 0.37 0.07 2.36 0.61 ... 0.61 0.00 0.05 0.30 0.02 0.59 0.07 2.93 4.52 0.00
garam masala 1.43 0.00 2.29 3.18 4.40 0.26 3.98 0.28 14.07 4.00 ... 0.33 0.14 0.30 0.63 0.49 0.42 0.44 0.49 13.25 0.00
ginger powder 0.21 0.02 0.05 0.44 0.35 0.05 0.84 0.02 0.59 0.49 ... 0.00 0.19 0.02 0.02 0.12 0.07 0.00 0.07 0.47 0.00
green chillies 1.80 0.00 1.59 7.61 4.61 0.28 3.96 0.21 12.22 4.84 ... 0.77 0.19 0.33 1.19 0.33 1.08 0.66 2.36 17.11 0.07
indian gooseberry 0.05 0.00 0.00 0.30 0.00 0.02 0.00 0.02 0.16 0.00 ... 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.05 0.21 0.00
kalpasi 0.02 0.00 0.00 0.02 0.02 0.00 0.07 0.00 0.02 0.07 ... 0.00 0.02 0.00 0.07 0.00 0.00 0.05 0.00 0.00 0.00
mace 0.37 0.00 0.02 0.09 0.82 0.00 1.08 0.05 0.80 1.05 ... 0.00 0.49 0.02 0.26 0.14 0.00 0.30 0.00 0.89 0.00
mustard seed 0.75 0.00 0.87 12.71 1.15 0.07 0.73 0.02 8.03 1.59 ... 0.70 0.09 0.07 0.80 0.05 1.64 0.28 6.74 15.35 0.00
nigella seed 0.16 0.00 0.35 0.30 0.26 0.02 0.07 0.00 0.84 0.14 ... 1.66 0.00 0.02 0.16 0.02 0.07 0.02 0.07 1.26 0.02
nutmeg 0.16 0.00 0.00 0.14 0.61 0.00 1.08 0.09 0.44 0.96 ... 0.00 1.52 0.00 0.30 0.23 0.07 0.28 0.05 0.56 0.00
pomegranate seed 0.09 0.00 0.14 0.09 0.12 0.09 0.23 0.00 0.47 0.19 ... 0.02 0.00 0.77 0.05 0.07 0.02 0.02 0.07 0.33 0.00
poppy seed 0.23 0.00 0.02 0.54 0.75 0.00 1.47 0.00 1.38 1.40 ... 0.16 0.30 0.05 3.25 0.19 0.26 0.37 0.42 1.80 0.02
saffron 0.21 0.00 0.05 0.28 0.66 0.09 3.14 0.02 0.68 0.84 ... 0.02 0.23 0.07 0.19 4.03 0.07 0.14 0.00 0.59 0.00
sesame seed 0.40 0.00 0.26 1.57 0.16 0.02 0.35 0.00 1.59 0.23 ... 0.07 0.07 0.02 0.26 0.07 4.19 0.07 0.82 1.61 0.00
star anise 0.23 0.00 0.05 0.26 1.10 0.02 1.29 0.02 0.82 1.38 ... 0.02 0.28 0.02 0.37 0.14 0.07 1.73 0.14 0.89 0.00
tamarind 0.37 0.00 0.33 5.17 0.26 0.28 0.42 0.00 3.58 0.89 ... 0.07 0.05 0.07 0.42 0.00 0.82 0.14 11.96 7.21 0.00
turmeric 2.97 0.00 3.51 15.05 7.54 0.33 6.60 0.51 28.39 8.10 ... 1.26 0.56 0.33 1.80 0.59 1.61 0.89 7.21 48.47 0.05
white pepper 0.00 0.00 0.02 0.02 0.07 0.00 0.07 0.00 0.05 0.07 ... 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.05 0.16

34 rows × 34 columns

temp_name = [i.title() for i in spice_adj_freq.index.to_list()]
spice_adj_freq['Plot_name'] = temp_name
spice_adj_freq = spice_adj_freq.set_index('Plot_name')
spice_adj_freq.columns = temp_name
spice_adj_freq
Ajwain Alkanet Root Amchoor Asafoetida Bay Leaf Black Salt Cardamom Celery Seeds Chilli Powder Cinnamon ... Nigella Seed Nutmeg Pomegranate Seed Poppy Seed Saffron Sesame Seed Star Anise Tamarind Turmeric White Pepper
Plot_name
Ajwain 5.218816 0.000000 0.702083 1.450971 0.982916 0.070208 1.053124 0.000000 3.487011 1.333957 ... 0.163819 0.163819 0.093611 0.234028 0.210625 0.397847 0.234028 0.374444 2.972151 0.000000
Alkanet Root 0.000000 0.070208 0.000000 0.070208 0.046806 0.000000 0.070208 0.000000 0.070208 0.070208 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Amchoor 0.702083 0.000000 4.984788 1.544582 0.374444 0.210625 0.351041 0.023403 3.861456 0.468055 ... 0.351041 0.000000 0.140417 0.023403 0.046806 0.257430 0.046806 0.327639 3.510414 0.023403
Asafoetida 1.450971 0.070208 1.544582 24.596302 1.333957 0.304236 1.614791 0.210625 9.688743 1.872221 ... 0.304236 0.140417 0.093611 0.538264 0.280833 1.567985 0.257430 5.172010 15.047976 0.023403
Bay Leaf 0.982916 0.046806 0.374444 1.333957 10.695062 0.093611 6.037912 0.070208 6.716593 6.646384 ... 0.257430 0.608472 0.117014 0.748888 0.655277 0.163819 1.099930 0.257430 7.535689 0.070208
Black Salt 0.070208 0.000000 0.210625 0.304236 0.093611 1.638193 0.093611 0.023403 0.608472 0.093611 ... 0.023403 0.000000 0.093611 0.000000 0.093611 0.023403 0.023403 0.280833 0.327639 0.000000
Cardamom 1.053124 0.070208 0.351041 1.614791 6.037912 0.093611 17.786099 0.140417 6.131524 7.980342 ... 0.070208 1.076527 0.234028 1.474374 3.135970 0.351041 1.287152 0.421250 6.599579 0.070208
Celery Seeds 0.000000 0.000000 0.023403 0.210625 0.070208 0.023403 0.140417 0.795694 0.374444 0.187222 ... 0.000000 0.093611 0.000000 0.000000 0.023403 0.000000 0.023403 0.000000 0.514861 0.000000
Chilli Powder 3.487011 0.070208 3.861456 9.688743 6.716593 0.608472 6.131524 0.374444 37.959279 7.044231 ... 0.842499 0.444652 0.468055 1.380763 0.678680 1.591388 0.819097 3.580623 28.387550 0.046806
Cinnamon 1.333957 0.070208 0.468055 1.872221 6.646384 0.093611 7.980342 0.187222 7.044231 13.128949 ... 0.140417 0.959513 0.187222 1.404166 0.842499 0.234028 1.380763 0.889305 8.097355 0.070208
Cloves 2.012637 0.070208 1.427568 5.054996 6.576176 0.163819 7.652703 0.187222 14.135268 9.290896 ... 0.351041 0.702083 0.234028 1.591388 0.795694 0.959513 1.427568 3.931664 17.294641 0.023403
Coriander Seeds/Powder 1.755207 0.000000 2.410484 5.125205 4.914580 0.257430 4.306108 0.468055 16.264919 4.352914 ... 0.351041 0.304236 0.280833 0.702083 0.327639 0.561666 0.585069 1.848818 16.779780 0.000000
Cumin Seeds/Powder 2.153054 0.000000 3.276387 13.269366 5.874093 1.193541 5.195413 0.351041 21.553943 6.669787 ... 0.889305 0.538264 0.514861 1.240346 0.538264 1.919026 0.912708 5.874093 27.451439 0.070208
Curry Leaves 0.608472 0.000000 0.444652 12.543880 1.006319 0.117014 1.170138 0.046806 8.635619 2.036040 ... 0.163819 0.070208 0.070208 0.655277 0.023403 1.731804 0.280833 7.325064 16.522350 0.046806
Fennel Seed 0.748888 0.046806 0.819097 1.684999 1.450971 0.163819 1.989235 0.070208 3.767845 2.457290 ... 0.702083 0.257430 0.093611 0.912708 0.421250 0.374444 0.748888 0.819097 4.212497 0.000000
Fenugreek Leaf 0.865902 0.000000 0.795694 4.540136 1.638193 0.117014 1.521179 0.117014 6.388954 1.731804 ... 0.702083 0.023403 0.163819 0.374444 0.070208 0.889305 0.257430 3.229581 8.705827 0.000000
Fenugreek Seed 0.140417 0.000000 0.468055 3.159373 0.351041 0.070208 0.374444 0.070208 2.363679 0.608472 ... 0.608472 0.000000 0.046806 0.304236 0.023403 0.585069 0.070208 2.925345 4.516733 0.000000
Garam Masala 1.427568 0.000000 2.293471 3.182776 4.399719 0.257430 3.978469 0.280833 14.065060 4.001872 ... 0.327639 0.140417 0.304236 0.631875 0.491458 0.421250 0.444652 0.491458 13.245963 0.000000
Ginger Powder 0.210625 0.023403 0.046806 0.444652 0.351041 0.046806 0.842499 0.023403 0.585069 0.491458 ... 0.000000 0.187222 0.023403 0.023403 0.117014 0.070208 0.000000 0.070208 0.468055 0.000000
Green Chillies 1.802013 0.000000 1.591388 7.605897 4.610344 0.280833 3.955067 0.210625 12.216242 4.844372 ... 0.772291 0.187222 0.327639 1.193541 0.327639 1.076527 0.655277 2.363679 17.107419 0.070208
Indian Gooseberry 0.046806 0.000000 0.000000 0.304236 0.000000 0.023403 0.000000 0.023403 0.163819 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.023403 0.000000 0.046806 0.210625 0.000000
Kalpasi 0.023403 0.000000 0.000000 0.023403 0.023403 0.000000 0.070208 0.000000 0.023403 0.070208 ... 0.000000 0.023403 0.000000 0.070208 0.000000 0.000000 0.046806 0.000000 0.000000 0.000000
Mace 0.374444 0.000000 0.023403 0.093611 0.819097 0.000000 1.076527 0.046806 0.795694 1.053124 ... 0.000000 0.491458 0.023403 0.257430 0.140417 0.000000 0.304236 0.000000 0.889305 0.000000
Mustard Seed 0.748888 0.000000 0.865902 12.707700 1.146735 0.070208 0.725486 0.023403 8.027147 1.591388 ... 0.702083 0.093611 0.070208 0.795694 0.046806 1.638193 0.280833 6.739995 15.352212 0.000000
Nigella Seed 0.163819 0.000000 0.351041 0.304236 0.257430 0.023403 0.070208 0.000000 0.842499 0.140417 ... 1.661596 0.000000 0.023403 0.163819 0.023403 0.070208 0.023403 0.070208 1.263749 0.023403
Nutmeg 0.163819 0.000000 0.000000 0.140417 0.608472 0.000000 1.076527 0.093611 0.444652 0.959513 ... 0.000000 1.521179 0.000000 0.304236 0.234028 0.070208 0.280833 0.046806 0.561666 0.000000
Pomegranate Seed 0.093611 0.000000 0.140417 0.093611 0.117014 0.093611 0.234028 0.000000 0.468055 0.187222 ... 0.023403 0.000000 0.772291 0.046806 0.070208 0.023403 0.023403 0.070208 0.327639 0.000000
Poppy Seed 0.234028 0.000000 0.023403 0.538264 0.748888 0.000000 1.474374 0.000000 1.380763 1.404166 ... 0.163819 0.304236 0.046806 3.252984 0.187222 0.257430 0.374444 0.421250 1.802013 0.023403
Saffron 0.210625 0.000000 0.046806 0.280833 0.655277 0.093611 3.135970 0.023403 0.678680 0.842499 ... 0.023403 0.234028 0.070208 0.187222 4.025275 0.070208 0.140417 0.000000 0.585069 0.000000
Sesame Seed 0.397847 0.000000 0.257430 1.567985 0.163819 0.023403 0.351041 0.000000 1.591388 0.234028 ... 0.070208 0.070208 0.023403 0.257430 0.070208 4.189094 0.070208 0.819097 1.614791 0.000000
Star Anise 0.234028 0.000000 0.046806 0.257430 1.099930 0.023403 1.287152 0.023403 0.819097 1.380763 ... 0.023403 0.280833 0.023403 0.374444 0.140417 0.070208 1.731804 0.140417 0.889305 0.000000
Tamarind 0.374444 0.000000 0.327639 5.172010 0.257430 0.280833 0.421250 0.000000 3.580623 0.889305 ... 0.070208 0.046806 0.070208 0.421250 0.000000 0.819097 0.140417 11.958811 7.208051 0.000000
Turmeric 2.972151 0.000000 3.510414 15.047976 7.535689 0.327639 6.599579 0.514861 28.387550 8.097355 ... 1.263749 0.561666 0.327639 1.802013 0.585069 1.614791 0.889305 7.208051 48.467119 0.046806
White Pepper 0.000000 0.000000 0.023403 0.023403 0.070208 0.000000 0.070208 0.000000 0.046806 0.070208 ... 0.023403 0.000000 0.000000 0.023403 0.000000 0.000000 0.000000 0.000000 0.046806 0.163819

34 rows × 34 columns

fig, ax = plt.subplots(1,1, figsize=(10,10))
sns.heatmap(spice_adj_freq.round(2).corr(), ax=ax)
#plt.savefig("heatmap.png", format="PNG", dpi=300)

Using frequency adjacency matrix we can plot a heatmap showing the pair-wise occurence for a given pair of spices. The idea with such an analysis is that if we can check the variation of Spice 1 with all the other spices in the list and compare that to Spice 2’s variation with all the other spices in the list, if spice 1 and spice 2 should have similar variation.

This map itself is quite interesting. The color intensity of each title shows the frequency that pair of spice occurred together in a recipe. Brighter the color higher their occurence together.

Some prominent spice pairs which show similarity are:

  • Curry leaves and Mustard seeds

  • Tumeric and Chilli Powder

Some pair of spices never occur together:

  • Saffron and Fenugreek seeds

  • Nutmeg and Mustard Seeds

Those who cook or know indian recipes would see that these pairs make sense and thereby validate the correlation seen from corpus of Indian recipes.

With that analysis, we can go a step further and analyze this information in form of a circular network graph. Using this method of plotting, we can see the interactions between different spices.

#hide spice_dict = {i : spice_adj_freq.loc[i, i] for i in spice_col_name } top_10_spices = list({k: v for k, v in sorted(spice_dict.items(), reverse=True, key=lambda item: item[1])}.keys())[:10] spice_adj_10 = spice_adj_freq.loc[top_10_spices, top_10_spices]

#hide top_10_spices

Creating network

import networkx as nx 
nodes_data = [(i, {'count':spice_adj_freq.loc[i, i]}) for i in temp_name]
# most binary interactions 
binary_int = []
for i in temp_name:
    binary_int.append((i, spice_adj_freq.loc[i].sort_values(ascending=False).index[1]))
spice_dict = {i : spice_adj_freq.loc[i, i] for i in temp_name }
spice_dict
{'Ajwain': 5.218815820266792,
 'Alkanet Root': 0.07020828457758016,
 'Amchoor': 4.984788205008191,
 'Asafoetida': 24.596302363678916,
 'Bay Leaf': 10.695062017318044,
 'Black Salt': 1.6381933068102035,
 'Cardamom': 17.78609875965364,
 'Celery Seeds': 0.7956938918792418,
 'Chilli Powder': 37.959279194945005,
 'Cinnamon': 13.128949216007488,
 'Cloves': 28.34074420781652,
 'Coriander Seeds/Powder': 20.336999765972386,
 'Cumin Seeds/Powder': 43.59934472267727,
 'Curry Leaves': 27.615258600514856,
 'Fennel Seed': 7.208050549964897,
 'Fenugreek Leaf': 12.965129885326467,
 'Fenugreek Seed': 7.208050549964897,
 'Garam Masala': 18.34776503627428,
 'Ginger Powder': 1.357360168499883,
 'Green Chillies': 29.815118183945703,
 'Indian Gooseberry': 0.3978469459396209,
 'Kalpasi': 0.07020828457758016,
 'Mace': 1.2403463608705827,
 'Mustard Seed': 24.315469225368595,
 'Nigella Seed': 1.6615960683360638,
 'Nutmeg': 1.5211794991809033,
 'Pomegranate Seed': 0.7722911303533817,
 'Poppy Seed': 3.2529838520945473,
 'Saffron': 4.025274982447929,
 'Sesame Seed': 4.189094313128949,
 'Star Anise': 1.7318043529136438,
 'Tamarind': 11.958811139714488,
 'Turmeric': 48.46711912005617,
 'White Pepper': 0.16381933068102036}
edges_data = [] 
for i in temp_name:
    for j in temp_name:
        if i != j:
            if spice_adj_freq.loc[i,j] != 0.0:
                edges_data.append((i, j, {'weight':spice_adj_freq.loc[i,j], 'distance':1}))
#G = nx.from_pandas_adjacency(spice_adj_freq)
#BUILD THE INITIAL FULL GRAPH
G=nx.Graph()
G.add_nodes_from(nodes_data)
G.add_edges_from(edges_data)
print(nx.info(G))
Name: 
Type: Graph
Number of nodes: 34
Number of edges: 471
Average degree:  27.7059
deg_l = {i:G.degree(i) for i in temp_name} 
highest_centrality_node = max(deg_l.items(), key=lambda x: x[1])[0]
highest_centrality_node
'Asafoetida'
#Adopted from: https://stackoverflow.com/questions/43894987/networkx-node-labels-relative-position
n = len(nodes_data)
edges = G.edges()

weights = [G[u][v]['weight'] for u,v in edges]
w_arr = np.array(weights)
norm_weight =  (w_arr - w_arr.min())/(w_arr.max() - w_arr.min())


angle = []
angle_dict = {}
node_list = sorted(G.nodes())
for i, node in zip(np.arange(n),node_list):
    theta = 2.0*np.pi*i/n
    angle.append((np.cos(theta),np.sin(theta)))
    angle_dict[node] = theta
pos = {}
for node_i, node in enumerate(node_list):
    pos[node] = angle[node_i]
    
fig, ax = plt.subplots(figsize=(20,20))
margin=0.33
fig.subplots_adjust(margin, margin, 1.-margin, 1.-margin)
ax.axis('equal')

nx.draw(G,pos=pos,with_labels=False, node_size=[spice_dict[k]*20 for k in spice_dict], width=norm_weight*2.0, node_color=np.arange(n), cmap=plt.cm.viridis, ax=ax)
description = nx.draw_networkx_labels(G,pos)

r = fig.canvas.get_renderer()
trans = plt.gca().transData.inverted()
for node, t in description.items():
    bb = t.get_window_extent(renderer=r)
    bbdata = bb.transformed(trans)
    radius = 1.1+bbdata.width/2
    position = (radius*np.cos(angle_dict[node]),radius* np.sin(angle_dict[node]))
    t.set_position(position)
    t.set_rotation(angle_dict[node]*360.0/(2.0*np.pi))
    t.set_clip_on(False)
    
#plt.savefig("Graph.png", format="PNG", dpi=300)

Finally a networkx circular graph is made where each node is a spice entry. Each edge between a pair of spice is a connection provided those two spices are found together in a recipe. The size of the node is the frequency of that spice to occur in all of 6000 food recipes. The thickness of the edge connecting a give spice-pair is the normalized frequency that pair occured among 6000 recipes.

Representing the analysis this way we find few key takeaways: * Tumeric, Mustard Seeds, Chilli Powder, Corriander Seeds, Cumin Seeds, Curry Leaves, Green Chillies, Asafoetida are the key spices in the Indian cuisine.

  • Most recipes use Tumeric + Chilli Powder + Cumin Powder (Seeds) in them.