Making equal spaces parity plots using Matplotlib

Quick guide on plotting equal axis scatter plot in matplotlib
Published

April 8, 2021

import os
import matplotlib.pyplot as plt
import numpy as np 

# High DPI rendering for mac
%config InlineBackend.figure_format = 'retina'
%config InlineBackend.print_figure_kwargs={'facecolor' : "w"}

plot_params = {
'font.size' : 22,
'axes.titlesize' : 24,
'axes.labelsize' : 20,
'axes.labelweight' : 'bold',
'xtick.labelsize' : 16,
'ytick.labelsize' : 16,
}
 
plt.rcParams.update(plot_params)
# Make dataset
X = np.linspace(0,5,200)
Y = 1.3*X + np.random.normal(0.01, size=X.shape)

Quick plotting

fig, ax = plt.subplots(1,1, figsize=(8,8))
ax.scatter(X, Y)
ax.set_xlabel('X')
ax.set_ylabel('Y')
Text(0, 0.5, 'Y')

Make plots with equal aspect ratio and axes

fig, ax = plt.subplots(1,1, figsize=(8,8))
ax.scatter(X, Y, label='data')

# Find limits for each axes 
lims = [np.min([ax.get_xlim(), ax.get_ylim()]),  # min of both axes
        np.max([ax.get_xlim(), ax.get_ylim()]),  # max of both axes
       ]

ax.plot(lims, lims, 'k--', alpha=0.75, zorder=0, label='parity')
ax.set_aspect('equal')

ax.set_xlim(lims)
ax.set_ylim(lims)

ax.set_xlabel('X')
ax.set_ylabel('Y')

handles, labels = ax.get_legend_handles_labels()
print(labels)
ax.legend(handles=handles, labels=labels, title="Legend")
['parity', 'data']

Slightly fancier output with parity and linear fit plots

fig, ax = plt.subplots(1,1, figsize=(8,8))
ax.scatter(X, Y, alpha=0.6, label='data')

lims = [np.min([ax.get_xlim(), ax.get_ylim()]),  # min of both axes
        np.max([ax.get_xlim(), ax.get_ylim()]),  # max of both axes
        ]

# Linear fit line 
reg = np.polyfit(X, Y, deg=1)
ax.plot(lims, reg[0] * np.array(lims) + reg[1], 'r--', linewidth=1.5, label='linear fit')

# Parity plot 
ax.plot(lims, lims, 'k--', alpha=0.75, zorder=0, label='parity')
#ax.set_aspect('equal')
        
ax.set_xlabel('X')
ax.set_ylabel('Y')

handles, labels = ax.get_legend_handles_labels()
print(labels)

# Put a legend to the right of the current axis
ax.legend(handles=handles, labels=labels, title="Legend", loc='center left', bbox_to_anchor=(1, 0.5))
['linear fit', 'parity', 'data']